请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

乐文小说网 www.lewen5.co,最快更新走进不科学最新章节!

要检查是不是光学晶体将光线折射到了其他方位。

    然而无论他怎么校正晶体,接收器上依旧是没有任何电火花出现。

    可是.....

    这怎么可能呢?

    6了不下三十次,再怎么非酋.....

    额,等等?

    法拉第忽然想到了什么,目光隐隐的瞥向了人群中的塔图姆·奥斯汀。

    难道是这位嚷嚷着要种西瓜和棉花的黑人同学的缘故?

    没记错的话。

    这位黑人同学来自莫桑比克,是部落的下一任酋长,因此才能受到良好的基础教育......

    而就在法拉第心思泛动之际。

    一旁的徐云估摸着火候差不多了,便让小麦撤去凸透镜。

    关闭电源,重新调试起了光学晶体。

    这一次他选择的目标,是另一枚走离角为40°左右的天然级联晶体。

    至于自准性反正笨蛋读者们也不知道是啥...咳咳,由于比较难测同时加之时间有限,所以徐云也就没去深入计算。

    反正在这种实验条件下,自准性能在80%以上就行了。

    总之这枚晶体可以反射的是蓝光,也就是波长在440—485纳米之间的光线。

    调试完毕后。

    徐云再次返回发生器边上,按下了开关。

    电压依旧是从零上升。

    过了小半分钟。

    啪!

    发生器上例行出现了一道电火花,而令法拉第等人呼吸停滞的是......

    接收器上居然也跟着出现了一道火花!

    作为当世顶尖的物理学家,法拉第等人怎能意识不到这代表着什么?!

    然而这还没完。

    只见徐云再次一招手,小麦哼哧哼哧的便拿着几枚偏振片走了上来,交到了徐云手里。

    颠了颠掌心的偏振片,徐云的表情略微有些微妙。

    说起偏振片的用途,想必很多同学都不陌生。

    它允许透过某一电失量振动方向的光,同时吸收与其垂直振动的光,即具有二向色性。

    也就是dλ/λ=。

    其中n是有梯度变化的折射率,源于不同介质间流场速度会发生梯度变化,n=1/√(1-u2/c2)。

    说人话就是在自然光通过偏振片后,透射光基本上成为平面偏振光,光强减弱1/2。

    按照历史轨迹。

    后世实验室中常用的偏振片要到1908年,才会由海对面的兰德制作出来。

    但在这个副本中,由于波动说没有像原本时间线中那样被长期打压,甚至还反超了微粒说一头。

    因此与波动说有关的许多小设备,都提前了许多时间问世。

    根据徐云在《1650-1830:科学史跃迁两百年》中了解到的信息。

    42年前,也就是1808年。

    在马吕斯验证了光的偏振现象后没多久,偏振片就首次诞生了。

    虽然此时的偏振片远远没有后世那么精细,但在还未涉及到微观世界的19世纪早期,还是能支撑起绝大多数实验要求的。

    一直以来,它都是被用于支持光的的波动说——因为只有横波才会发生偏振嘛。

    但今时今日。

    这个小东西在自己的手中,又将成为证明微粒说的工具之一.......

    世间万物,有些时候就是这么神奇。

    徐云这次准备的是由三个偏振片组合成的混合系统,第一块与第三块偏振化方向互相垂直,第一块与第二款偏振化方向互相平行。

    同时第二块偏振片以恒定的角速度w,绕光传播方向旋转。

    自然光通过偏振片P1之后形成偏振光,光强为I1=I/2。

    同时根据马吕斯定律,通过P3的光强为I3=Icos2Θ。

    由于P与P3的偏振化方向垂直。

    所以P与P2的偏振化方向的夹角为Φ=π/2-Θ, I=I(1-cos4wt)/16。

    再根据马吕斯定律。

    I=Icos2Φ=I3sin2Θ=I(2Θ)2

    所以通过P3的光强为= I(sin22Θ)/8 =I(1–cos4Θ)/16。

    cos4Θ=-1时,通过系统的光强最大。

    这个系统省去了徐云手动降低光强的麻烦,计算过程很简单,也非常好理解。

    接着徐云将偏振片系统放到锌板前,深吸一口气,退回了原位。

    很快。

    在偏振组合的作用下。

    发生器溅跃出来的光线强度得到了削减,周期最低甚至达到了1/16。

    但令法拉第等人哑口无言的是......

    无论偏振组合旋转到什么地步,哪怕光强被缩小了十余倍不止,接收器上依旧有电火花出现!

    啪啪啪。

    看着面前跃动的电光,法拉第忽然脸色一白,嘴中斯哈一声,一把捂住胸口,大口的开始喘起了气。

    一旁的斯托克斯最先发现了他的异常,连忙扶住他的肩膀,额头瞬间布满了细密的汗珠,喊道:

    “法拉第先生,您没事吧?校医呢?校医在哪里?”

    见此情形。

    发生器边上的徐云也是心头一颤,一步窜到了法拉第面前:

    “法拉第先生!法拉第先生!”

    直到此时,徐云才回想起了被自己忽略的一件事:

    法拉第有很严重的冠心病。

    1867年8月25日他在书房中看书时逝世,后世非常主流的一种看法便是他突发了心绞痛。

    更关键的是.....

    今天考虑到开学典礼人多眼杂,室内温度也不利于硝酸甘油保存,徐云便将硝酸甘油留在了宿舍里头,没有带在身上。

    眼下这么一位科学巨匠如果因为自己的缘故突发意外,他真的可以说是罪比孙笑川了。

    不过令徐云紧绷的心弦微微一松的是。

    法拉第先是拧巴着脸朝他摆了摆手,飞快的从胸口取出了一个小瓶子。

    颤颤巍巍的倒出了一枚药片,塞进舌下,闭着眼睛含服了起来。

    过了一分钟左右。

    法拉第脸色逐渐变得红润,呼吸也恢复了正常。

    他先是看了眼斯托克斯:

    “多谢你了,斯托克斯教授,我没事。”

    随后不等斯托克斯回答,便轻轻推开搀扶,静静的走到接收器前,凝视着一簇簇短暂而耀眼的火花。

    这位目前物理界最强的大老,此时的目光前所未有的凝重。

    眼下的情况清晰的说明了一件事:

    在一定频率以内,光电效应和光强无关。

    只要光频不足,光强拉到天上去也没用。

    而只要达到了特定频率,哪怕光强再小,现象依旧会正常发生。

    这无疑是违逆现有科学体系的一种情况,光的波动说完全无法对它进行解释。

    因为波动理论描述光的能量是连续的,及光强...也就是振幅越大,光能越大,光的能量与频率无关。

    同时在用弱光照射接收器时,发生器上应该有能量积累过程,不会瞬时生成电火花。

    这就好比一列动车,入口的人流量不大,便代表着旅客尚未到齐。

    而按照规则,列车必须要满员才能发动,那能怎么办呢?

    答桉自然是只能等,等人全到了才能发车。

    但眼下光电效应的现象,却相当于旅客只到了一两位,列车就发动了.......

    至于微粒说......

    法拉第沉思片刻,很快便想到了一些解释思路:

    当光粒子照射到金属上的时候,它的能量可以被金属中的某个电荷全部吸收,电荷的动能立刻增大并不需要积累能量。

    如果电荷的动能足够大,能克服金属内部对它的吸力。

    那么就可以离开金属的表面形成电火花......

    但这样一来。

    许多以波动说为基底的理论,在正确性上就存在疑问了。

    甚至如果细究下去的话,哪怕是现有的微粒说,其实也不太能支撑起光电现象的解析。

    这相当于现有的物理大厦被挖了一处跟脚,虽然没有完全坍塌,但已经出现了倾斜的现象。

    想到这里。

    法拉第抬头看了眼夜空。

    此时的夜空如同一片黑幕,只有零星的光点点缀其上。

    1850年11月7日。

    一位华夏人轻轻的出现在了剑桥大学。

    他挥了挥衣袖,没有引来一船星辉,而是唤来了一朵乌云。

    波光里的电火花,在所有人的心头荡漾。

    那榆荫下的一潭,不是清泉,是氯化银和氟硅酸的混合溶液。

    夏虫也为之沉默,因为现在是冬天。

    沉默,是今晚的康桥。

    而实际上。

    徐云带来的震撼,远远不止这么简单......

    毕竟作为给法拉第吓出心绞痛的补偿,为他圆个人生遗憾不过分吧?

    至于小麦嘛。

    对唔住了,我系穿越者.......

    ........

    注:

    有同学反馈老法容易看成法老,我也被带进去了...所以以后还是叫法拉第吧。

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”